Part Number Hot Search : 
FU8102Z5 DRH3D SIR850DP M1300 8HC05 CT273MT K2414 XF001
Product Description
Full Text Search
 

To Download LRI2K-A1T1GE Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  september 2008 rev 8 1/86 1 lri2k 2048-bit eeprom tag ic at 13.5 6 mhz, with 64-bit uid and kill code, iso 15693 and iso 18000-3 mode 1 compliant features iso 15693 standard fully compliant iso 18000-3 mode 1 standard fully compliant 13.56 mhz 7 khz carrier frequency to tag: 10% or 100% ask modulation using 1/4 (26 kbit/s) or 1/256 (1.6 kbit/s) pulse position coding from tag: load modulation using manchester coding with 423 khz and 484 khz subcarriers in low (6.6 kbit/s) or hi gh (26 kbit/s) data rate mode. supports the 53 kbit/s data rate with fast commands internal tuning capacitor (21 pf, 23.5 pf, 28.5 pf, 97 pf) 1 000 000 erase/write cycles (minimum) 40 year data retention (minimum) 2048 bits eeprom with block lock feature 64-bit unique identifier (uid) electrical article surveillance capable (software controlled) kill function read & write (block of 32 bits) 5 ms programming time packages ?ecopack ? (rohs compliant) wafer ufdfpn8 (mb) 2 3 mm2 (mlp) www.st.com
contents lri2k 2/86 contents 1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 initial dialogue for vicinity cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 power transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.3 operating field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 communication signal from vcd to lri2k . . . . . . . . . . . . . . . . . . . . . 14 3 data rate and data coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 data coding mode: 1 out of 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 data coding mode: 1 out of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 vcd to lri2k frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 start of frame (sof) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 communications signal from lri2k to vcd . . . . . . . . . . . . . . . . . . . . 19 4.1 load modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5 bit representation and coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 bit coding using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.1 high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.2 low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 bit coding using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2.1 high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2.2 low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 lri2k to vcd frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1 sof when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1.1 high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1.2 low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
lri2k contents 3/86 6.2 sof when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2.1 high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2.2 low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.3 eof when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3.1 high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3.2 low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.4 eof when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.4.1 high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.4.2 low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7 unique identifier (uid) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8 application family identifier (afi ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9 data storage format identifier (dsfid) . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.1 crc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 10 lri2k protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 11 lri2k states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11.1 power-off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11.2 ready state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11.3 quiet state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11.4 selected state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 12 modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 12.1 addressed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 12.2 non-addressed mode (general request) . . . . . . . . . . . . . . . . . . . . . . . . . 34 12.3 select mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 13 request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 13.1 request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 14 response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 14.1 response flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 14.2 response error code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
contents lri2k 4/86 15 anticollision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 15.1 request parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 16 request processing by the lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 17 explanation of the possible cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 18 inventory initiated command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 19 timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 19.1 t1: lri2k response delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 19.2 t2: vcd new request delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 19.3 t 3 : vcd new request delay in the absence of a response from the lri2k 45 20 commands codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 20.1 inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 20.2 stay quiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 20.3 read single block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 20.4 write single block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 20.5 lock block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 20.6 read multiple block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 20.7 select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 20.8 reset to ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 20.9 write afi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 20.10 lock afi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 20.11 write dsfid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 20.12 lock dsfid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 20.13 get system info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 20.14 get multiple block security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 20.15 kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 20.16 write kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 20.17 lock kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 20.18 fast read single block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 20.19 fast inventory initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 20.20 fast initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
lri2k contents 5/86 20.21 fast read multiple block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 20.22 inventory initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 20.23 initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 21 maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 22 dc and ac parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 23 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 24 part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 appendix a anticollision algorithm (informative) . . . . . . . . . . . . . . . . . . . . . . . . 81 a.1 algorithm for pulsed slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 appendix b crc (informative) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 b.1 crc error detection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 b.2 crc calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 b.3 application family identifier (afi) (informati ve) . . . . . . . . . . . . . . . . . . . . . 84 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
list of tables lri2k 6/86 list of tables table 1. signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 2. lri2k memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 table 3. 10% modulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 table 4. response data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 table 5. uid format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 table 6. crc transmission rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 table 7. vcd request frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 table 8. lri2k response frame format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 table 9. lri2k response depending on request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 table 10. general request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 table 11. definitions of request flags 1 to 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 table 12. request flags 5 to 8 when bit 3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 table 13. request flags 5 to 8 when bit 3 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 table 14. general response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 table 15. definitions of response flags 1 to 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 table 16. response error code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 table 17. inventory request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 table 18. example of the addition of 0-bits to an 11-bit mask value . . . . . . . . . . . . . . . . . . . . . . . . . 39 table 19. timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 table 20. command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 table 21. inventory request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 22. inventory response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 23. stay quiet request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 table 24. read single block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 table 25. read single block response format when error_flag is not set . . . . . . . . . . . . . . . . . . . . 49 table 26. block locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 table 27. read single block response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 49 table 28. write single block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 table 29. write single block response format when error_flag is not set . . . . . . . . . . . . . . . . . . . . 51 table 30. write single block response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 51 table 31. lock single block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 table 32. lock block response format when error_flag is not set . . . . . . . . . . . . . . . . . . . . . . . . . . 52 table 33. lock block response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 table 34. read multiple block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 table 35. read multiple block response format when error_flag is not set. . . . . . . . . . . . . . . . . . . 53 table 36. block locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 table 37. read multiple block response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . 53 table 38. select request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 39. select block response format when error_flag is not set. . . . . . . . . . . . . . . . . . . . . . . . . 55 table 40. select response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 41. reset to ready request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 42. reset to ready response format when error_flag is not set . . . . . . . . . . . . . . . . . . . . . . 56 table 43. reset to ready response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 44. write afi request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 45. write afi response format when error_flag is not set . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 46. write afi response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 47. lock afi request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 48. lock afi response format when error_flag is not set . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
lri2k list of tables 7/86 table 49. lock afi response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 50. write dsfid request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 table 51. write dsfid response format when error_flag is not set . . . . . . . . . . . . . . . . . . . . . . . . 59 table 52. write dsfid response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 table 53. lock dsfid request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 table 54. lock dsfid response format when error_flag is not set . . . . . . . . . . . . . . . . . . . . . . . . . 60 table 55. lock dsfid response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 table 56. get system info request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 table 57. get system info response format when error_flag is not set. . . . . . . . . . . . . . . . . . . . . . 61 table 58. get system info response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . 61 table 59. get multiple block security status request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 table 60. get multiple block security status response format when error_flag is not set . . . . . . . 62 table 61. block locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 table 62. get multiple block security status response format when error_flag is set . . . . . . . . . . . . 62 table 63. kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 table 64. kill response format when error_ flag is not set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 table 65. kill response format when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 table 66. write kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 table 67. write kill response format when error_flag is not set . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 table 68. write kill response fo rmat when error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 table 69. lock kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 table 70. lock kill response format when error_flag is not set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 table 71. lock kill response format when er ror_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 table 72. fast read single block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 table 73. fast read single block response format when error_flag is not set . . . . . . . . . . . . . . . . 68 table 74. block locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 table 75. fast read single block response format when error_flag is set . . . . . . . . . . . . . . . . . . . . 68 table 76. fast inventory initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 table 77. fast inventory initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 0 table 78. fast initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 table 79. fast initiate response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 table 80. fast read multiple block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 table 81. fast read multiple block response format when error_flag is not set. . . . . . . . . . . . . . . 72 table 82. block locking status if option_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 table 83. fast read multiple block response format when error_flag is set . . . . . . . . . . . . . . . . . . . 72 table 84. inventory initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table 85. inventory initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table 86. initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 table 87. initiate initiated response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 table 88. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 table 89. ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 90. dc characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 table 91. operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 table 92. ufdfpn8 - 8-lead ultra thin fine pitch dual flat package no lead (mlp) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 93. ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 94. crc definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 table 95. afi coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 table 96. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
list of figures lri2k 8/86 list of figures figure 1. pad connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 figure 2. ufdfpn8 (mlp) connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 figure 3. 100% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 4. 10% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 5. 1 out of 256 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 6. detail of one time period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 7. 1 out of 4 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 8. 1 out of 4 coding example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 9. sof to select 1 out of 256 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 10. sof to select 1 out of 4 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 11. eof for either data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 12. logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 13. logic 0, high data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 14. logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 15. logic 1, high data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 16. logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 17. logic 0, low data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 18. logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 19. logic 1, low data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 20. logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 21. logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 22. logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 23. logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 24. start of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 figure 25. start of frame, high data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 26. start of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 figure 27. start of frame, low data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 figure 28. start of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 figure 29. start of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 figure 30. end of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 figure 31. end of frame, high data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 figure 32. end of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 figure 33. end of frame, low data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 figure 34. end of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 figure 35. end of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 figure 36. lri2k decision tree for afi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 figure 37. lri2k protocol timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 38. lri2k state transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 figure 39. principle of comparison between the mask, the slot number and the uid . . . . . . . . . . . . . 40 figure 40. description of a po ssible anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 figure 41. stay quiet frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 figure 42. read single block frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . 50 figure 43. write single block frame exchange between vcd and lri2k. . . . . . . . . . . . . . . . . . . . . . 51 figure 44. lock block frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 45. read multiple block frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . 54 figure 46. select frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 figure 47. reset to ready frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . 56 figure 48. write afi frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
lri2k list of figures 9/86 figure 49. lock afi frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 figure 50. write dsfid frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . 59 figure 51. lock dsfid frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . 60 figure 52. get system info frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . 61 figure 53. get multiple block security status frame exchange between vcd and lri2k . . . . . . . . . 63 figure 54. kill frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 figure 55. write kill frame exchange be tween vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 figure 56. lock kill frame exch ange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 figure 57. fast read single block frame exchange between vcd and lri2k. . . . . . . . . . . . . . . . . . 69 figure 58. fast initiate frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 figure 59. fast read multiple block frame exchange be tween vcd and lri2k . . . . . . . . . . . . . . . . 73 figure 60. initiate frame exchange between vcd and lri2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 figure 61. lri2k synchronous timing, transmit and receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 figure 62. ufdfpn8 - 8-lead ultra thin fine pitch dual flat package no lead (mlp) outline . . . . . . . . 79
description lri2k 10/86 1 description the lri2k is a contactless memory powered by the received carrier electromagnetic wave. it is a 2048-bit electrically erasable prog rammable memory (eepr om). the memory is organized as 64 blocks of 32 bits. the lri2k is accessed via the 13.56 mhz carrier electromagnetic wave on which incoming data are demodulated from the received signal amplitude modulation (ask: am plitude shift keying). the re ceived ask wave is 10% or 100% modulated with a data rate of 1.6 kbit/s using the 1/256 pulse coding mode or a data rate of 26 kbit/s using the 1/4 pulse coding mode. outgoing data are generated by the lri2k load variation using manchester coding with one or two subcarrier frequencies at 423 khz and 484 khz. data are transferred from the lri2k at 6.6 kbit/s in low data rate mode and 26 kbit/s fast data rate mode. the lri2k supports 53 kbit/s in high data rate mode with one subcarrier frequency at 423 khz. the lri2k follows the iso 15693 recommendation for radio-frequency power and signal interface. figure 1. pad connections figure 2. ufdfpn8 (mlp) connections 1. nc means not connected internally. table 1. signal names signal name function ac1 antenna coil ac0 antenna coil ai12065 ac1 lri2k ac0 power supply regulator manchester load modulator ask demodulator 2048 bit eeprom memory 1 ai11612b 2 3 4 8 7 6 5 ac0 ac1 nc nc nc nc nc nc
lri2k description 11/86 1.1 memory mapping the lri2k is divided into 64 blocks of 32 bits. each block can be individually write-protected using the lock command. the user area consists of blocks that are always accessible in read mode. write operations are possible if the addressed block is not protected. during a write operation, the 32 bits of the block are replaced by the new 32-bit value. the lri2k also has a 64-bit block that is used to store the 64-bit unique identifier (uid). the uid is compliant to the iso 15 963 description, and its value is used during the anticollision sequence (inventory). this block is not accessible by the user and its value is written by st on the production line. the lri2k also includes an afi register in which the application family identifier is stored, and a dsfid register in which the data storage family iden tifier used in the anticollision algorithm is stored. the lri2k has an additional 32-bit block in which the kill co de is stored. table 2. lri2k memory map add 0 7 8 15 16 23 24 31 0 user area 1 user area 2 user area 3 user area 4 user area 5 user area 6 user area 7 user area 8 user area user area user area user area 60 user area 61 user area 62 user area 63 user area uid 0 uid 1 uid 2 uid 3 uid 4 uid 5 uid 6 uid 7 afi dsfid kill code
description lri2k 12/86 1.2 commands the lri2k supports the following commands: inventory , used to perform the anticollision sequence. stay quiet , used to put the lri2k in quiet mode, where it does not respond to any inventory command. select , used to select the lri2k. after this command, the lri2k processes all read/write commands with select_flag set. reset to ready , used to put the lri2k in the ready state. read block , used to output the 32 bits of the selected block and its locking status. write block , used to write the 32-bit value in the selected block, provided that it is not locked. lock block , used to lock the selected block. after this command, the block cannot be modified. read multiple blocks , used to read the selected blocks and send back their value. write afi , used to write the 8-bit value in the afi register. lock afi , used to lock the afi register. write dsfid , used to write the 8-bit value in the dsfid register. lock dsfid , used to lock the dsfid register. get system info , used to provide the system information value get multiple block security status , used to send the security status of the selected block. initiate , used to trigger the tag response to the inventory initiated sequence. inventory initiated , used to perform the anticollision sequence triggered by the initiate command. kill , used to definitively deactivate the tag. write kill , used to write the 32 -bit kill code value lock kill , used to lock the kill code register. fast initiate , used to trigger the tag response to the inventory initiated sequence. fast inventory initiated , used to perform the anticollis ion sequence triggered by the initiate command. fast read block , used to output the 32 bits of the selected block and its locking status. fast read multiple blocks , used to read the selected blocks and send back their value.
lri2k description 13/86 1.3 initial dialogue for vicinity cards the dialog between the vicinity coupling device (vcd) and the vicinity integrated circuit card or vicc (lri2k) takes place as follows: activation of the lri2k by the rf operating field of the vcd transmission of a command by the vcd transmission of a response by the lri2k these operations use the rf power transfer an d communication signal interface described below (see power transfer , frequency and operating field ). this technique is called rtf (reader talk first). 1.3.1 power transfer power is transferred to the lri2k by radio frequency at 13.56 mhz via coupling antennas in the lri2k and the vcd. the rf operating field of the vcd is transformed on the lri2k antenna as an ac voltage which is rectified, filtered and internally regulated. the amplitude modulation (ask) on this received signal is demodulated by the ask demodulator. 1.3.2 frequency the iso 15693 standard defines the carrier frequency ( f c ) of the operating field as 13.56 mhz 7 khz. 1.3.3 operating field the lri2k operates continuously between h min and h max . the minimum operating field is h min and has a value of 150 ma/m rms. the maximum operating field is h max and has a value of 5 a/m rms. a vcd must generate a field of at least h min and not exceeding h max in the operating volume.
communication signal from vcd to lri2k lri2k 14/86 2 communication signal from vcd to lri2k communications between the vcd and the lri2k take place using the modulation principle of ask (amplitude shift keying). two modula tion indexes are used, 10% and 100%. the lri2k decodes both. the vcd determines which index is used. the modulation index is defined as [a ? b]/[a + b] where a is the peak signal amplitude and b the minimum signal amplitude of the carrier frequency. depending on the choice made by the vcd, a "pause" will be created as described in figure 3 and figure 4 . the lri2k is operational for any degree of modulation index between 10% and 30%. figure 3. 100% modulation waveform figure 4. 10% modulation waveform table 3. 10% modulation parameters symbol parameter definition value hr 0.1 x (a ? b) max hf 0.1 x (a ? b) max ai06683 trff trfsbl trfr 105% a t 100% 95% 60% 5% ai06655 trff trfsfl trfr hr hf ab t
lri2k data rate and data coding 15/86 3 data rate and data coding the data coding implemented in the lri2k us es pulse position modulation. both data coding modes that are described in the iso 15693 are supported by the lri2k. the selection is made by the vcd and indicated to the lri2k within the start of frame (sof). 3.1 data coding mode: 1 out of 256 the value of one single byte is represented by the position of one pause. the position of the pause on 1 of 256 successive time periods of 18.88 s (256/ f c ), determines the value of the byte. in this case the transmission of one byte takes 4.833 ms and the resulting data rate is 1.65 kbits/s ( f c /8192). figure 5 illustrates this pulse position modulation technique. in this figure, data e1h (225 decimal) is sent by the vcd to the lri2k. the pause occurs during the second half of the position of the time period that determines the value, as shown in figure 6 . a pause during the first period transmits the data value 00h. a pause during the last period transmits the data value ffh (255 decimal). figure 5. 1 out of 256 coding mode ai06656 0 1 2 3 . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . 2 2 2 2 . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . 5 5 5 5 . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . 2 3 4 5 4.833 ms 18.88 s 9.44 s pulse modulated carrier
data rate and data coding lri2k 16/86 figure 6. detail of one time period ai06657 2 2 5 18.88 s 9.44 s pulse modulated carrier 2 2 6 2 2 4 . . . . . . . . . . . . . . time period one of 256
lri2k data rate and data coding 17/86 3.2 data coding mode: 1 out of 4 the value of 2 bits is represented by the position of one pause. the position of the pause on 1 of 4 successive time periods of 18.88 s (256/ f c ) determines the value of the 2 bits. four successive pairs of bits form a byte, where the least significant pair of bits is transmitted first. in this case the transmission of one byte takes 302.08 s and the resulting data rate is 26.48 kbit/s ( f c /512). figure 7 illustrates the 1 out of 4 pulse position techni que and coding. figure 8 shows the transmission of e1h (225d - 1110 0001b) by the vcd. figure 7. 1 out of 4 coding mode figure 8. 1 out of 4 coding example ai06658 9.44 s 9.44 s 75.52 s 28.32 s 9.44 s 75.52 s 47.20 s 9.44 s 75.52 s 66.08 s 9.44 s 75.52 s pulse position for "00" pulse position for "11" pulse position for "10" (0=lsb) pulse position for "01" (1=lsb) ai06659 75.52 s 75.52 s 75.52 s 75.52 s 00 10 01 11
data rate and data coding lri2k 18/86 3.3 vcd to lri2k frames frames are delimited by a start of frame (sof) and an end of frame (eof). they are implemented using code violation. unus ed options are reserved for future use. the lri2k is ready to receive a new command frame from the vcd 311.5 s (t 2 ) after sending a response frame to the vcd. the lri2k takes a power-on time of 0.1 ms after being activated by the powering field. after this delay, the lri2k is ready to receive a command frame from the vcd. 3.4 start of frame (sof) the sof defines the data coding mode the vcd is to use for the following command frame. the sof sequence described in figure 9 selects the 1 out of 256 data coding mode. the sof sequence described in figure 10 selects the 1 out of 4 data coding mode. the eof sequence for either coding mode is described in figure 11 . figure 9. sof to select 1 out of 256 data coding mode figure 10. sof to select 1 out of 4 data coding mode figure 11. eof for either data coding mode ai06661 37.76 s 9.44 s 9.44 s 37.76 s ai06660 37.76 s 9.44 s 9.44 s 37.76 s 9.44 s ai06662 9.44 s 37.76 s 9.44 s
lri2k communications signal from lri2k to vcd 19/86 4 communications signal from lri2k to vcd the lri2k has several modes defined for some parameters, owing to which it can operate in different noise environments and meet different application requirements. 4.1 load modulation the lri2k is capable of communication with the vcd via an inductive coupling area whereby the carrier is loaded to generate a subcarrier with frequency f s . the subcarrier is generated by switching a load in the lri2k. the load-modulated amplitude received on the vcd antenna shall be at least 10 mv when measured as described in the test methods defined in international standard iso 10373-7. 4.2 subcarrier the lri2k supports the one-subcarrier and two-subcarrier response formats. these formats are selected by the vcd using the first bit in the protocol header. when one subcarrier is used, the frequency f s1 of the subcarrier load modulation is 423.75 khz ( f c /32). when two subcarriers are used, frequency f s1 is 423.75 khz ( f c /32), and frequency f s2 is 484.28 khz ( f c /28). when using the two-subcarrier mode, the lri2k generates a continuous phase relationship between f s1 and f s2 . 4.3 data rates the lri2k can respond using the low or the high data rate format. the selection of the data rate is made by the vcd using the second bit in the protocol header. it also supports the x2 mode available on all the fast commands. ta bl e 4 shows the different data rates produced by the lri2k using the different response format combinations. table 4. response data rate data rate one subcarrier two subcarriers low standard commands 6.62 kbits/s ( f c /2048) 6.67 kbits/s ( f c /2032) fast commands 13.24 kbits/s ( f c /1024) not applicable high standard commands 26.48 kbits/s ( f c /512) 26.69 kbits/s ( f c /508) fast commands 52.97 kbits/s ( f c /256) not applicable
bit representation and coding lri2k 20/86 5 bit representation and coding data bits are encoded using manchester coding, according to the following schemes. for the low data rate, the same subcarrier frequency or frequencies is/are used, in this case the number of pulses is multiplied by 4 and all time s are increased by this factor. for the fast commands using one subcarrier, all pulse numbers and times are divided by 2. 5.1 bit coding using one subcarrier 5.1.1 high data rate a logic 0 starts with 8 pulses at 423.75 khz ( f c /32) followed by an unmodulated time of 18.88 s as shown in figure 12 . figure 12. logic 0, high data rate for the fast commands, a logic 0 starts with 4 pulses at 423.75 khz ( f c /32) followed by an unmodulated time of 9.44 s as shown in figure 13 . figure 13. logic 0, high data rate x2 a logic 1 starts with an unmodulated time of 18.88 s followed by 8 pulses at 423.75 khz ( f c /32) as shown in figure 14 . figure 14. logic 1, high data rate for the fast commands, a logic 1 starts with an unmodulated time of 9.44 s followed by 4 pulses at 423.75 khz ( f c /32) as shown in figure 15 . figure 15. logic 1, high data rate x2 37.76s ai12076 18.88s ai12066 37.76s ai12077 18.88s ai12067
lri2k bit representation and coding 21/86 5.1.2 low data rate a logic 0 starts with 32 pulses at 423.75 khz ( f c /32) followed by an unmodulated time of 75.52 s as shown in figure 16 . figure 16. logic 0, low data rate for the fast commands, a logic 0 starts with 16 pulses of 423,75 khz ( f c /32) followed by an unmodulated time of 37,76 s as shown in figure 17 . figure 17. logic 0, low data rate x2 a logic 1 starts with an unmodulated time of 75,52 s followed by 32 pulses of 423,75 khz ( f c /32) as shown in figure 18 . figure 18. logic 1, low data rate for the fast commands, a logic 1 starts with an unmodulated time of 37.76 s followed by 16 pulses at 423.75 khz ( f c /32) as shown in figure 19 . figure 19. logic 1, low data rate x2 151.04s ai12068 75.52s ai12069 151.04s ai12070 75.52s ai12071
bit representation and coding lri2k 22/86 5.2 bit coding using two subcarriers 5.2.1 high data rate a logic 0 starts with 8 pulses at 423.75 khz ( f c /32) followed by 9 pulses at 484.28 khz ( f c /28) as shown in figure 20 . for the fast commands, the x2 mode is not available. figure 20. logic 0, high data rate a logic 1 starts with 9 pulses at 484.28 khz ( f c /28) followed by 8 pulses at 423.75 khz ( f c /32) as shown in figure 21 . for the fast commands, the x2 mode is not available. figure 21. logic 1, high data rate 5.2.2 low data rate a logic 0 starts with 32 pulses at 423.75 khz ( f c /32) followed by 36 pulses at 484.28 khz ( f c /28) as shown in figure 22 . for the fast commands, the x2 mode is not available. figure 22. logic 0, low data rate a logic 1 starts with 36 pulses at 484.28khz ( f c /28) followed by 32 pulses at 423.75khz ( f c /32) as shown in figure 23 . for the fast commands, the x2 mode is not available. figure 23. logic 1, low data rate 37.46 s ai12074 37.46 s ai12073 149.84s ai12072 149.84s ai12075
lri2k lri2k to vcd frames 23/86 6 lri2k to vcd frames frames are delimited by an sof and an eof. they are implemented using code violation. unused options are reserved for future use. for the low data rate, the same subcarrier frequency or frequencies is/are used. in this case the number of pulses is multiplied by 4. for the fast commands using one subcarrier, all pulse numbers and times are divided by 2. 6.1 sof when using one subcarrier 6.1.1 high data rate the sof includes an unmodulated time of 56.64 s followed by 24 pulses at 423.75 khz ( f c /32), and a logic 1 that consists of an unmodulated time of 18.88 s followed by 8 pulses at 423.75 khz. the sof is shown in figure 24 . figure 24. start of frame, high data rate, one subcarrier for the fast commands, the sof comprises an unmodulated time of 28.32 s, followed by 12 pulses at 423.75 khz ( f c /32), and a logic 1 that consists of an unmodulated time of 9.44 s followed by 4 pulses at 423.75 khz as shown in figure 25 . figure 25. start of frame, high data rate, one subcarrier x2 113.28s ai12078 37.76s 56.64s ai12079 18.88s
lri2k to vcd frames lri2k 24/86 6.1.2 low data rate sof comprises an unmodulated time of 226.56 s, followed by 96 pulses at 423.75 khz ( f c /32), and a logic 1 that consists of an unmodulated time of 75.52 s followed by 32 pulses at 423.75 khz as shown in figure 26 . figure 26. start of frame, low data rate, one subcarrier for the fast commands, the sof comprises an unmodulated time of 113.28 s followed by 48 pulses at 423.75 khz ( f c /32), and a logic 1 that includes an unmodulated time of 37.76 s followed by 16 pulses at 423.75 khz as shown in figure 27 . figure 27. start of frame, low data rate, one subcarrier x2 6.2 sof when using two subcarriers 6.2.1 high data rate the sof comprises 27 pulses at 484.28 khz ( f c /28), followed by 24 pulses at 423.75 khz ( f c /32), and a logic 1 that includes 9 pulses at 484.28 khz followed by 8 pulses at 423.75 khz as shown in figure 28 . for the fast commands, the x2 mode is not available. figure 28. start of frame, high data rate, two subcarriers 6.2.2 low data rate the sof comprises 108 pulses at 484.28 khz ( f c /28) followed by 96 pulses at 423.75 khz ( f c /32), and a logic 1 that includes 36 pulses at 484.28 khz followed by 32 pulses at 423.75 khz as shown in figure 29 . for the fast commands, the x2 mode is not available. figure 29. start of frame, low data rate, two subcarriers 453.12s ai12080 151.04s 226.56s ai12081 75.52s 112.39s ai12082 37.46s 449.56s ai12083 149.84s
lri2k lri2k to vcd frames 25/86 6.3 eof when using one subcarrier 6.3.1 high data rate the eof comprises a logic 0 that includes 8 pulses at 423.75 khz and an unmodulated time of 18.88 s, followed by 24 pulses at 423.75 khz ( f c /32) and by an unmodulated time of 56.64 s as shown in figure 30 . figure 30. end of frame, high data rate, one subcarrier for the fast commands, the eof comprises a logic 0 that includes 4 pulses at 423.75 khz and an unmodulated time of 9.44 s, followed by 12 pulses at 423.75 khz ( f c /32) and an unmodulated time of 28.32 s as shown in figure 31 . figure 31. end of frame, high data rate, one subcarrier x2 6.3.2 low data rate the eof comprises a logic 0 that includes 32 pulses at 423.75 khz and an unmodulated time of 75.52 s, followed by 96 pulses at 423.75 khz ( f c /32) and an unmodulated time of 226.56 s as shown in figure 32 . figure 32. end of frame, low data rate, one subcarrier for the fast commands, the eof comprises a logic 0 that includes 16 pulses at 423.75 khz and an unmodulated time of 37.76 s, followed by 48 pulses at 423.75 khz ( f c /32) and an unmodulated time of 113.28 s as shown in figure 33 . figure 33. end of frame, low data rate, one subcarrier x2 113.28s ai12084 37.76s 56.64s ai12085 18.88s 453.12s ai12086 151.04s 226.56s ai12087 75.52s
lri2k to vcd frames lri2k 26/86 6.4 eof when using two subcarriers 6.4.1 high data rate the eof comprises a logic 0 that includes 8 pulses at 423.75 khz and 9 pulses at 484.28 khz, followed by 24 pulses at 423.75 khz ( f c /32) and 27 pulses at 484.28 khz ( f c /28) as shown in figure 34 . for the fast commands, the x2 mode is not available. figure 34. end of frame, high data rate, two subcarriers 6.4.2 low data rate the eof comprises a logic 0 that includes 32 pulses at 423.75 khz and 36 pulses at 484.28 khz, followed by 96 pulses at 423.75 khz ( f c /32) and 108 pulses at 484.28 khz ( f c /28) as shown in figure 35 for the fast commands, the x2 mode is not available. figure 35. end of frame, low data rate, two subcarriers 112.39s ai12088 37.46s 449.56s ai12089 149.84s
lri2k unique identifier (uid) 27/86 7 unique identifier (uid) the lri2ks are uniquely identified by a 64-bit unique identifier (u id). this uid complies with iso/iec 15963 and iso/iec 7816-6. the uid is a read-only code, and comprises: the 8 msbs are e0h the ic manufacturer code of st 02h, on 8 bits (iso/iec 7816-6/am1) a unique serial number on 48 bits. with the uid each lri2k can be addressed uniq uely and individually during the anticollision loop and for one-to-one exchanges between a vcd and an lri2k. table 5. uid format msb lsb 63 56 55 48 47 0 e0h 02h unique serial number
application family identifier (afi) lri2k 28/86 8 application family identifier (afi) the afi (application family identifier) represent s the type of application targeted by the vcd and is used to identify, among all the lri2ks present, only the lri2ks that meet the required application criteria. figure 36. lri2k decision tree for afi the afi is programmed by the lri2k issuer (or purchaser) in the afi register. once programmed and locked, it can no longer be modified. the most significant nibble of th e afi is used to code one spec ific or all application families. the least significant nibble of the afi is us ed to code one specific or all application subfamilies. subfamily codes different from 0 are proprietary. (see iso 15693-3 documentation) ai12091 inventory request received no no answer yes no afi value = 0 ? yes no afi flag set ? yes answer given by the lri2k to the inventory request afi value = internal value ?
lri2k data storage format identifier (dsfid) 29/86 9 data storage format identifier (dsfid) the data storage format identifier indicates how the data is structured in the lri2k memory. the logical organization of data can be known instantly using the dsfid. it can be programmed and locked using the write dsfid and lock dsfid commands, respectively. it is coded on one byte. 9.1 crc the crc used in the lri2k is calculated as per the definition in iso/iec 13239. the initial register contents are all ones: "ffff". the two-byte crc is appended to each request and response, within each frame, before the eof. the crc is calculated on all the bytes between the sof and the crc field. upon reception of a request from the vcd, the lri2k verifies that the crc value is valid. if it is invalid, the lri2k discards the frame and does not answer to the vcd. upon reception of a response from the lri2k, it is recommended that the vcd verifies whether the crc value is valid. if it is invalid, actions to be performed are left to the discretion of the vcd designers. the crc is transmitted least significant byte first. each byte is transmitted least significant bit first. table 6. crc transmission rules lsbyte msbyte lsbit msbit lsbit msbit crc 16 (8bits) crc 16 (8 bits)
lri2k protocol description lri2k 30/86 10 lri2k protocol description the transmission protocol (or simply protoc ol) defines the mechanism used to exchange instructions and data between the vcd and the lri2k, in both directions. it is based on the concept of "vcd talks first". this means that an lri2k will not start transmitting unless it has received and properly decoded an instruction sent by the vcd. the protocol is based on an exchange of: a request from the vcd to the lri2k a response from the lri2k to the vcd each request and each response are contained in a frame. the frame delimiters (sof, eof) are described in section 6: lri2k to vcd frames . each request consists of: a request sof (see figure 9 and figure 10 ) flags a command code parameters, depending on the command application data a 2-byte crc a request eof (see figure 11 ) each response consists of: an answer sof (see figure 24 to figure 29 ) flags parameters, depending on the command application data a 2-byte crc an answer eof (see figure 30 to figure 35 ) the protocol is bit-oriented. the number of bits transmitted in a frame is a multiple of eight (8), i.e. an integer number of bytes. a single-byte field is transmitted least signific ant bit (lsbit) first. a multiple-byte field is transmitted least significant byte (lsbyte) first, with each byte transmitted least significant bit (lsbit) first. the setting of the flags indicates the presence of the optional fields. when the flag is set (to one), the field is present. when the flag is reset (to zero), the field is absent. table 7. vcd request frame format request sof request flags command code parameters data 2 byte crc request eof table 8. lri2k response frame format response sof response flags parameters data 2 byte crc response eof
lri2k lri2k protocol description 31/86 figure 37. lri2k protocol timing vcd request frame ( ta b l e 7 ) request frame ( ta bl e 7 ) lri2k response frame ( ta bl e 8 ) response frame ( ta b l e 8 ) timing t 1 t 2 t 1 t 2
lri2k states lri2k 32/86 11 lri2k states an lri2k can be in one of 4 states: power-off ready quiet selected transitions between these states are specified in figure 38: lri2k state transition diagram and table 9: lri2k response depending on request flags . 11.1 power-off state the lri2k is in the power-off state when it does not receive enough energy from the vcd. 11.2 ready state the lri2k is in the ready state when it receives enough energy from the vcd. when in the ready state, the lri2k answers any request where the select_flag is not set. 11.3 quiet state when in the quiet state, the lri2k answers any request except for inventory requests with the address_flag set. 11.4 selected state in the selected state, the lri2k answers any request in all modes (see section 12: modes ): request in select mode with the select flag set request in addressed mode if the uid matches request in non-addressed mode as it is the mode for general requests
lri2k lri2k states 33/86 figure 38. lri2k state transition diagram 1. the intention of the state transition method is that only one lri2k should be in the selected state at a time. table 9. lri2k response depending on request flags flags address_flag select_flag 1 addressed 0 non addressed 1 selected 0 non selected lri2k in ready or selected state (devices in quiet state don?t answer) xx lri2k in selected state x x lri2k in ready, quiet or selected state (the device which match the uid) xx error (03h) x x ai06681 power off in field out of field ready quiet selected any other command where select_flag is not set out of field out of field stay quiet(uid) select (uid) any other command any other command where the address_flag is set and where inventory_flag is not set stay quiet(uid) select (uid) reset to ready where select_flag is set or select(different uid) reset to ready
modes lri2k 34/86 12 modes the term ?mode? refers to the mechanism used in a request to specify the set of lri2ks that will answer the request. 12.1 addressed mode when the address_flag is set to 1 (addressed mode), the request contains the unique id (uid) of the addressed lri2k. any lri2k that receives a request with the address_flag set to 1 compares the received unique id to its own. if it matches, then the lri2k executes the request (if possible) and returns a response to the vcd as specified in the command description. if its uid does not match, then it rema ins silent. 12.2 non-addressed mo de (general request) when the address_flag is set to 0 (non-addressed mode), the request does not contain a unique id. any lri2k receiving a request with the address_flag set to 0 executes it and returns a response to the vcd as specified in the command description. 12.3 select mode when the select_flag is set to 1 (select mo de), the request does not contain an lri2k unique id. the lri2k in the selected state th at receives a request with the select_flag set to 1 executes it and returns a response to the vcd as specified in the command description. only lri2ks in the selected state answer to a request where the select flag is set to 1. the system design ensures in theory that only one lri2k can be in the select state at a time.
lri2k request format 35/86 13 request format the request consists of: an sof flags a command code parameters and data a crc an eof 13.1 request flags in a request, the "flags" field specifies th e actions to be performed by the lri2k and whether corresponding fields are present or not. the flags field consists of eight bits. the bit 3 (inventory_flag) of the request flag defines the contents of the 4 msbs (bits 5 to 8). when bit 3 is reset (0), bits 5 to 8 define the lri2k selection criteria. when bit 3 is set (1), bits 5 to 8 define the lri2k inventory parameters. table 10. general request format s o f request flags command code parameters data crc e o f table 11. definitions of request flags 1 to 4 bit no flag level description bit 1 subcarrier_flag (1) 1. subcarrier_flag refers to the lri2k -to-vcd communication. 0 a single subcarrier frequency is used by the lri2k 1 two subcarriers are used by the lri2k bit 2 data_rate_flag (2) 2. data_rate_flag refers to the lri2k -to-vcd communication 0 low data rate is used 1 high data rate is used bit 3 inventory flag 0 the meaning of flags 5 to 8 is described in ta bl e 1 2 1 the meaning of flags 5 to 8 is described in ta bl e 1 3 bit 4 protocol extension flag 0 no protocol format extension
request format lri2k 36/86 table 12. request flags 5 to 8 when bit 3 = 0 bit no flag level description bit 5 select_flag (1) 1. if the select_flag is set to 1, the address_flag is set to 0 and the uid field is not present in the request. 0 request is executed by any lri2k according to the setting of address_flag 1 request is executed only by the lri2k in selected state bit 6 address_flag (1) 0 request is not addressed. uid field is not present. the request is executed by all lri2ks. 1 request is addressed. uid field is present. the request is executed only by the lri2k whose uid matches the uid specified in the request. bit 7 option flag 0 bit 8 rfu 0 table 13. request flags 5 to 8 when bit 3 = 1 bit no flag level description bit 5 afi flag 0 afi field is not present 1 afi field is present bit 6 nb_slots flag 0 16 slots 11 slot bit 7 option flag 0 bit 8 rfu 0
lri2k response format 37/86 14 response format the response consists of: an sof flags parameters and data a crc an eof 14.1 response flags in a response, the flags indicate how actions have been performed by the lri2k and whether corresponding fields are present or not. the response flags consist of eight bits. table 14. general response format s o f response flags parameters data crc e o f table 15. definitions of response flags 1 to 8 bit no. flag level description bit 1 error_flag 0 no error 1 error detected. error code is in the "error" field. bit 2 rfu 0 bit 3 rfu 0 bit 4 extension flag 0 no extension bit 5 rfu 0 bit 6 rfu 0 bit 7 rfu 0 bit 8 rfu 0
response format lri2k 38/86 14.2 response error code if the error_flag is set by the lri2k in the response, the error code field is present and provides information about the error that occurred. error codes not specified in ta bl e 1 6 are reserved for future use. table 16. response error code definition error code meaning 03h the command option is not supported 0f error with no information given or a specific error code is not supported. 10h the specified block is not available (does not exist). 11h the specified block is already locked and thus cannot be locked again 12h the specified block is locked and its contents cannot be changed. 13h the specified block was not successfully programmed. 14h the specified block was not successfully locked.
lri2k anticollision 39/86 15 anticollision the purpose of th e anticollision sequence is to invent ory the lri2ks present in the vcd field using their unique id (uid). the vcd is the master of communications with one or several lri2ks. it initiates lri2k communication by issuing the inventory request. the lri2k sends its response in the determined slot or does not respond. 15.1 request parameters when issuing the inventory command, the vcd: sets the nb_slots_flag as desired, adds the mask length and the mask value after the command field, the mask length is the number of significant bits of the mask value. the mask value is contained in an integer number of bytes. the mask length indicates the number of significant bits. the lsb is transmitted first. if the mask length is not a multiple of 8 (bits), as many 0-bits as required will be added to the mask value msb so that the mask value is contained in an integer number of bytes. the next field starts on the next byte boundary. in the example of ta b l e 1 8 and figure 39 , the mask length is 11 bits. five 0-bits are added to the mask value msb. the 11-bit mask and the current slot number are compared to the uid. table 17. inventory request format msb lsb sof request_ flags command optional afi mask length mask value crc eof 8 bits 8 bits 8 bits 8 bits 0 to 8 bytes 16 bits table 18. example of the addition of 0-bits to an 11-bit mask value (b 15 ) msb lsb (b 0 ) 0000 0 100 1100 1111 0-bits added 11-bit mask value
anticollision lri2k 40/86 figure 39. principle of comparison between the mask, the slot number and the uid the afi field is present if the afi_flag is set. the pulse is generated according to the definition of the eof in iso/iec 15693-2. the first slot starts immediately after the reception of the request eof. to switch to the next slot, the vcd sends an eof. the following rules and restrictions apply: if no lri2k answer is detected, the vcd may switch to the next slot by sending an eof, if one or more lri2k answers are detected, the vcd waits until the complete frame has been received before sending an eof for switching to the next slot. ai06682 mask value received in the inventory command 0000 0100 1100 1111 b 16 bits the mask value less the padding 0s is loaded into the tag comparator 100 1100 1111 b 11 bits the slot counter is calculated xxxx nb_slots_flags = 0 (16 slots), slot counter is 4 bits the slot counter is concatened to the mask value xxxx 100 1100 1111 b nb_slots_flags = 0 15 bits the concatenated result is compared with the least significant bits of the tag uid. xxxx xxxx ..... xxxx xxxx x xxx xxxx xxxx xxxx 64 bits lsb msb b lsb msb lsb msb lsb msb b0 b63 compare bits ignored uid 4 bits
lri2k request processing by the lri2k 41/86 16 request processing by the lri2k upon reception of a valid request, the lri2k performs the following algorithm: nbs is the total number of slots (1 or 16) sn is the current slot number (0 to 15) lsb (value, n) function returns the n less significant bits of value msb (value, n) function returns the n most significant bits of value "&" is the concatenation operator slot_frame is either an sof or an eof sn = 0 if (nb_slots_flag) then nbs = 1 sn_length = 0 endif else nbs = 16 sn_length = 4 endif label1: if lsb(uid, sn_length + mask_length) = lsb(sn,sn_length)&lsb(mask,mask_length) then answer to inventory request endif wait (slot_frame) if slot_frame = sof then stop anticollision decode/process request exit endif if slot_frame = eof if sn < nbs-1 then sn = sn + 1 goto label1 exit endif endif
explanation of the possible cases lri2k 42/86 17 explanation of the possible cases figure 40 summarizes the main poss ible cases that can occu r during an anticollision sequence when the slot number is 16. the different steps are: the vcd sends an inventory request, in a frame terminated by an eof. the number of slots is 16. lri2k 1 transmits its response in slot 0. it is the only one to do so, therefore no collision occurs and its uid is rece ived and registered by the vcd; the vcd sends an eof in order to switch to the next slot. in slot 1, two lri2ks, lri2k 2 and lri2k 3 transmit a response, thus generating a collision. the vcd records the event and re members that a collision was detected in slot 1. the vcd sends an eof in order to switch to the next slot. in slot 2, no lri2k transmits a response. therefore the vcd does not detect any lri2k sof and decides to switch to the next slot by sending an eof. in slot 3, there is anothe r collision caused by responses from lri2k 4 and lri2k 5 the vcd then decides to send a request (for instance a read block) to lri2k 1 whose uid has already been correctly received. all lri2ks detect an sof and exit the anticollision s equence. they process this request and since the request is addresse d to lri2k 1, only lri2k 1 transmits a response. all lri2ks are ready to receive another request. if it is an inventory command, the slot numbering sequence restarts from 0. note: the decision to interrupt the anticollision sequenc e is made by the vcd. it could have continued to send eofs until slot 16 and only then sent the request to lri2k 1.
lri2k explanation of the possible cases 43/86 figure 40. description of a possible anticollision sequence ai12090 slot 0 slot 1 slot 2 slot 3 vcd sof inventory request eof eof eof eof sof request to lri2k 1 eof response 2 response 4 lri2ks response from lri2k 1 response 1 response 3 response 5 timing t1 t2 t1 t2 t3 t1 t2 t1 comment no collision collision no response collision time
inventory initiated command lri2k 44/86 18 inventory initiated command the lri2k provides a special feature to improve the inventory time response of moving tags using the initiate_flag value. this flag, contro lled by the initiate comm and, allows tags to answer to inventory initiated commands. for applications in which multiple tags are moving in front of a reader, it is possible to miss tags using the standard inventory command. the reason is that the inventory sequence has to be performed on a global tree search. for example, a tag with a particular uid value may have to wait the run of a long tree search before being inventoried. if the delay is too long, the tag may be out of the field before it has been detected. using the initiate command, the inventory sequence is optimized. when multiple tags are moving in front of a re ader, the ones which are within th e reader field will be initiated by the initiate command. in th is case, a small batch of tags will answer to the inventory initiated command which will optimize the time necessary to identify all the ta gs. when finished, the reader has to issue a new initia te command in order to initia te a new small batch of tags which are new inside the reader field. it is also possible to reduce the inventory sequence time using the fast initiate and fast inventory initiated commands. these commands allow the lri2ks to increase their response data rate by a factor of 2, up to 53kbit/s.
lri2k timing definition 45/86 19 timing definition 19.1 t 1 : lri2k response delay upon detection of the rising edge of the eof received from the vcd, the lri2k waits for a time t 1nom before transmitting its response to a vcd request or before switching to the next slot during an inventory process. values of t 1 are given in ta b l e 1 9 . the eof is defined in figure 11 on page 18 . 19.2 t 2 : vcd new request delay t 2 is the time after which the vcd may send an eof to switch to the next slot when one or more lri2k responses have been received during an inventory command. it starts from the reception of the eof from the lri2ks. the eof sent by the vcd may be either 10% or 100% modulated regardless of the modulation index used for transmitting the vcd request to the lri2k. t 2 is also the time after which the vcd may send a new request to the lri2k as described in table 37: lri2k protocol timing . values of t 2 are given in ta b l e 1 9 . 19.3 t 3 : vcd new request delay in the absence of a response from the lri2k t 3 is the time after which the vcd may send an eof to switch to the next slot when no lri2k response has been received. the eof sent by the vcd may be either 10% or 100% modulated regardless of the modulation index used for transmitting the vcd request to the lri2k. from the time the vcd has generated the rising edge of an eof: if this eof is 100% modulated, the vcd waits a time at least equal to t 3min before sending a new eof. if this eof is 10% modulated, the vcd waits a time at least equal to the sum of t 3min + the lri2k nominal response time (which depends on the lri2k data rate and subcarrier modulation mode) before sending a new eof. table 19. timing values (1) 1. the tolerance of specific timings is 32/f c . minimum (min) values nominal (n om) values maximum (max) values t 1 318.6 s 320.9 s 323.3 s t 2 309.2 s no t nom no t max t 3 t 1max (2) + t sof (3) 2. t 1max does not apply for write alike requests. timing condi tions for write alike requests are defined in the command description. 3. t sof is the time taken by the lri2k to transmit an sof to the vcd. t sof depends on the current data rate: high data rate or low data rate. no t nom no t max
commands codes lri2k 46/86 20 commands codes the lri2k supports the commands described in this section. their codes are given in ta bl e 2 0 . table 20. command codes command code standard function command code custom function 01h inventory a6h kill 02h stay quiet b1h write kill 20h read single block b2h lock kill 21h write single block c0h fast read single block 22h lock block c1h fast inventory initiated 23h read multiple block c2h fast initiate 25h select c3h fast read multiple block 26h reset to ready d1h inventory initiated 27h write afi d2h initiate 28h lock afi 29h write dsfid 2ah lock dsfid 2bh get system info 2ch get multiple block security status
lri2k commands codes 47/86 20.1 inventory when receiving the inventory request, the lri2k runs th e anticollision sequence. the inventory_flag is set to 1. the meaning of flags 5 to 8 is shown in table 13: request flags 5 to 8 when bit 3 = 1 . the request contains: the flags, the inventory command code (see table 20: command codes ) the afi if the afi flag is set the mask length the mask value the crc the lri2k does not generate any answer in case of error. the response contains: the flags the unique id during an inventory process, if the vcd does not receive an rf lri2k response, it waits a time t 3 before sending an eof to switch to the next slot. t 3 starts from the rising edge of the request eof sent by the vcd. if the vcd sends a 100% modulated eof, the minimum value of t 3 is: t 3 min = 4384/f c (323.3s) + t sof if the vcd sends a 10% modulated eof, the minimum value of t 3 is: t 3 min = 4384/f c (323.3s) + t nrt where: t sof is the time required by the lri2k to transmit an sof to the vcd t nrt is the nominal response time of the lri2k t nrt and t sof are dependent on the lri2k-to-vcd data rate and subcarrier modulation mode. table 21. inventory request format request sof request flags inventory optional afi mask length mask value crc16 request eof 8 bits 01h 8 bits 8 bits 0 - 64 bits 16 bits table 22. inventory response format response sof response flags dsfid uid crc16 response eof 8 bits 8 bits 64 bits 16 bits
commands codes lri2k 48/86 20.2 stay quiet on receiving the stay quiet command, the lri2k enters the quiet state and does not send back a response. there is no response to the stay quiet command even if an error occurs. when in the quiet state: the lri2k does not process any request if the inventory_flag is set, the lri2k processes any addressed request the lri2k exits the quiet state when: it is reset (power off), receiving a select request. it then goes to the selected state, receiving a reset to ready request. it then goes to the ready state. the stay quiet command must always be executed in the addressed mode (select_flag is reset to 0 and address_flag is set to 1). table 23. stay quiet request format request sof request flags stay quiet uid crc16 request eof 8 bits 02h 64 bits 16 bits figure 41. stay quiet frame exchange between vcd and lri2k vcd sof stay quiet request eof lri2k timing
lri2k commands codes 49/86 20.3 read single block on receiving the read single block command, the lri2k reads the requested block and sends back its 32 bits value in the response. the option_flag is supported. request parameters: option_flag uid (optional) block number response parameter: block locking status if option_flag is set (see table 26: block locking status ) 4 bytes of block data response parameter: error code as error_flag is set: ? 0fh: other error ? 10h: block address not available table 24. read single block request format request sof request_flags read single block uid block number crc16 request eof 8 bits 20h 64 bits 8 bits 16 bits table 25. read single block response format when error_flag is not set response sof response_ flags block locking status data crc16 response eof 8 bits 8 bits 32 bits 16 bits table 26. block locking status b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 all 0 0: current block not locked 1: current block locked table 27. read single block response format when error_flag is set response sof response_ flags error code crc16 response eof 8 bits 8 bits 16 bits
commands codes lri2k 50/86 figure 42. read single block frame exchange between vcd and lri2k vcd sof read single block request eof lri2k <-t 1 -> sof read single block response eof
lri2k commands codes 51/86 20.4 write single block on receiving the write single block command, the lri2k writes the data contained in the request to the requested block and reports whether the write operation was successful in the response. the option_flag is supported. during the write cycle t w , there should be no modulation (neither 100% nor 10%). otherwise, the lri2k may not program correctly the data into the memory. the t w time is equal to t 1nom + 18 302s. request parameters: uid (optional) block number data response parameter: no parameter. the response is sent back after the write cycle. response parameter: error code as error_flag is set: ? 10h: block address not available ? 12h: block is locked ? 13h: block not programmed table 28. write single block request format request sof request_ flags write single block uid block number data crc16 request eof 8 bits 21h 64 bits 8 bits 32 bits 16 bits table 29. write single block response format when error_flag is not set response sof response_f lags crc16 response eof 8 bits 16 bits table 30. write single block response format when error_flag is set response sof respon se_flags error code crc16 response eof 8 bits 8 bits 16 bits figure 43. write single block frame exchange between vcd and lri2k vcd sof write single block request eof lri2k <-t 1 -> sof write single block response eof write sequence when error lri2k <------------ t w ------------><- t 1 -> sof write single block response eof
commands codes lri2k 52/86 20.5 lock block on receiving the lock block command, the lri2k permanently locks the selected block. the option_flag is supported. during the write cycle t w , there should be no modulation (neither 100% nor 10%). otherwise, the lri2k may not lock correctly the memory block. the t w time is equal to t 1nom + 18 302s. request parameters: (optional) uid block number response parameter: no parameter. response parameter: error code as error_flag is set: ? 10h: block address not available ? 11h: block is locked ? 14h: block not locked table 31. lock single block request format request sof request_ flags lock block uid block number crc16 request eof 8 bits 22h 64 bits 8 bits 16 bits table 32. lock block response format when error_flag is not set response sof response_flags crc16 response eof 8 bits 16 bits table 33. lock block response format when error_flag is set response sof response_flags error code crc16 response eof 8 bits 8 bits 16 bits figure 44. lock block frame exchange between vcd and lri2k vcd sof lock block request eof lri2k <-t 1 -> sof lock block response eof lock sequence when error lri2k <------------ t w ------------><- t 1 -> sof lock block response eof
lri2k commands codes 53/86 20.6 read multiple block when receiving the read multiple block command, the lri2k reads the selected blocks and sends back their value in multiples of 32 bits in the response. the blocks are numbered from '00 to '3f' in the request and the value is minus one (?1) in the field. for example, if the ?number of blocks? field contains the value 0 6h, 7 blocks will be read. the maximum number of blocks is fixed at 64. during sequential block read, when the block address reaches 64, it rolls over to 0. the option_flag is supported. request parameters: option_flag uid (optional) first block number number of blocks response parameter: block locking status if option_flag is set (see table 36: block locking status ) n blocks of data response parameter: error code as error_flag is set: ? 0fh: other error ? 10h: block address not available table 34. read multiple block request format request sof request_ flags read multiple block uid first block number number of blocks crc16 request eof 8 bits 23h 64 bits 8 bits 8 bits 16 bits table 35. read multiple block response format when error_flag is not set response sof response_ flags block locking status data crc16 response eof 8 bits 8 bits (1) 1. repeated as needed. 32 bits (1) 16 bits table 36. block locking status b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 all 0 0: current block not locked 1: current block locked table 37. read multiple block response format when error_flag is set response sof response_flags error code crc16 response eof 8 bits 8 bits 16 bits
commands codes lri2k 54/86 figure 45. read multiple block frame exchange between vcd and lri2k vcd sof read multiple block request eof lri2k <-t 1 -> sof read multiple block response eof
lri2k commands codes 55/86 20.7 select when receiving the select command: if the uid is equal to its own uid, the lri2k enters or stays in the selected state and sends a response. if the uid does not match its own, the selected lri2k returns to the ready state and does not send a response. the lri2k answers an error code only if the uid is equal to its own uid. if not, no response is generated. request parameter: uid response parameter: no parameter. response parameter: error code as error_flag is set: ? 0fh: other error table 38. select request format request sof request_ flags select uid crc16 request eof 8 bits 25h 64 bits 16 bits table 39. select block response format when error_flag is not set response sof response_flags crc16 response eof 8 bits 16 bits table 40. select response format when error_flag is set response sof response_flags err or code crc16 response eof 8 bits 8 bits 16 bits figure 46. select frame exchange between vcd and lri2k vcd sof select request eof lri2k <-t 1 -> sof select response eof
commands codes lri2k 56/86 20.8 reset to ready on receiving a reset to ready command, the lri2k returns to the ready state. in the addressed mode, the lri2k answers an error code only if the uid is equal to its own uid. if not, no response is generated. request parameter: uid (optional) response parameter: no parameter. response parameter: error code as error_flag is set: ? 0fh: other error table 41. reset to ready request format request sof request_ flags reset to ready uid crc16 request eof 8 bits 26h 64 bits 16 bits table 42. reset to ready response format when error_flag is not set response sof response_flags crc16 response eof 8 bits 16 bits table 43. reset to ready response format when error_flag is set response sof response_ flags error code crc16 response eof 8 bits 8 bits 16 bits figure 47. reset to ready frame exchange between vcd and lri2k vcd sof reset to ready request eof lri2k <-t 1 -> sof reset to ready response eof
lri2k commands codes 57/86 20.9 write afi on receiving the write afi request, the lri2k writes the afi byte value into its memory. the option_flag is supported. during the write cycle t w , there should be no modulation (neither 100% nor 10%). otherwise, the lri2k may not write correctly the afi value into the memory. the t w time is equal to t 1nom + 18 302s. request parameters: uid (optional) afi response parameter: no parameter. response parameter: error code as error_flag is set: ? 12h: block is locked ? 13h: block not programmed table 44. write afi request format request sof request _flags write afi uid afi crc16 request eof 8 bits 27h 64 bits 8 bits 16 bits table 45. write afi response format when error_flag is not set response sof response_f lags crc16 response eof 8 bits 16 bits table 46. write afi response format when error_flag is set response sof response_flags error code crc16 response eof 8 bits 8 bits 16 bits figure 48. write afi frame exchange between vcd and lri2k vcd sof write afi request eof lri2 k <-t 1 -> sof write afi response eof write sequence when error lri2 k <------------ t w ------------><- t 1 -> sof write afi response eof
commands codes lri2k 58/86 20.10 lock afi on receiving the lock afi request, the lri2k locks the afi value permanently. the option_flag is supported. during the write cycle t w , there should be no modulation (neither 100% nor 10%). otherwise, the lri2k may not lock correctly the afi value in memory. the t w time is equal to t 1nom + 18 302 s. request parameter: uid (optional) response parameter: no parameter. response parameter: error code as error_flag is set: ? 11h: block is locked ? 14h: block not locked table 47. lock afi request format request sof request_ flags lock afi uid crc16 request eof 8 bits 28h 64 bits 16 bits table 48. lock afi response format when error_flag is not set response sof response_flags crc16 response eof 8 bits 16 bits table 49. lock afi response format when error_flag is set response sof response_flags error code crc16 response eof 8 bits 8 bits 16 bits figure 49. lock afi frame exchange between vcd and lri2k vcd sof lock afi request eof lri2k <-t 1 -> sof lock afi response eof lock sequence when error lri2k <------------ t w ------------><- t 1 -> sof lock afi response eof
lri2k commands codes 59/86 20.11 write dsfid on receiving the write dsfid request, the lr i2k writes the dsfid byte value into its memory. the option_flag is supported. during the write cycle t w , there should be no modulation (neither 100% nor 10%). otherwise, the lri2k may not write corr ectly the dsfid value in memory. the t w time is equal to t 1nom + 18 302s. request parameters: uid (optional) dsfid response parameter: no parameter. response parameter: error code as error_flag is set: ? 12h: block is locked ? 13h: block not programmed table 50. write dsfid request format request sof request_ flags write dsfid uid dsfid crc16 request eof 8 bits 29h 64 bits 8 bits 16 bits table 51. write dsfid response format when error_flag is not set response sof response_f lags crc16 response eof 8 bits 16 bits table 52. write dsfid response format when error_flag is set response sof response_ flags error code crc16 response eof 8 bits 8 bits 16 bits figure 50. write dsfid frame exchange between vcd and lri2k vcd sof write dsfid request eof lri2k <-t 1 -> sof write dsfid response eof write sequence when error lri2k <------------ t w ------------><- t 1 -> sof write dsfid response eof
commands codes lri2k 60/86 20.12 lock dsfid on receiving the lock dsfid request, the lri2k locks the dsfid value permanently. the option_flag is supported. during the write cycle t w , there should be no modulation (neither 100% nor 10%). otherwise, the lri2k may not lock correctly the dsfid value in memory. the t w time is equal to t 1nom + 18 302s. request parameter: uid (optional) response parameter: no parameter. response parameter: error code as error_flag is set: ? 11h: block is locked ? 14h: block not locked table 53. lock dsfid request format request sof request_ flags lock dsfid uid crc16 request eof 8 bits 2ah 64 bits 16 bits table 54. lock dsfid response format when error_flag is not set response sof response_f lags crc16 response eof 8 bits 16 bits table 55. lock dsfid response format when error_flag is set response sof response_ flags error code crc16 response eof 8 bits 8 bits 16 bits figure 51. lock dsfid frame exchange between vcd and lri2k vcd sof lock dsfid request eof lri2k <-t 1 -> sof lock dsfid response eof lock sequence when error lri2k <------------ t w ------------><- t 1 -> sof lock dsfid response eof
lri2k commands codes 61/86 20.13 get system info when receiving the get system info command, the lri2k sends back its information data in the response.the option_flag is supported and must be reset to 0. the get system info can be issued in both addressed and non addressed modes. request parameter: uid (optional) response parameters: information flags set to 0fh. dsfid, afi, memory size and ic reference fields are present. uid code on 64 bits dsfid value afi value memory size. the lri2k provides 64 blocks (3fh) of 4 bytes (03h). ic reference. only the 6 msbs are signif icant. the product code of the lri2k is 00 1000 b =8 d response parameter: error code as error_flag is set: ? 03h: option not supported ? 0fh: other error table 56. get system info request format request sof request_ flags get system info uid crc16 request eof 8 bits 2bh 64 bits 16 bits table 57. get system info response format when error_flag is not set response sof response_ flags information flags uid dsfid afi memory size ic reference crc16 response eof 00h 0fh 64 bits 8 bits 8 bits 033fh 001000xx b 16 bits table 58. get system info response format when error_flag is set response sof response_flags error code crc16 response eof 01h 8 bits 16 bits figure 52. get system info frame exchange between vcd and lri2k vcd sof get system info request eof lri2k <-t 1 -> sof get system info response eof
commands codes lri2k 62/86 20.14 get multiple bl ock security status when receiving the get multiple block security status command, the lri2k sends back the block security status. the blocks are numbered from '00 to '3f' in the request and the value is minus one (?1) in the field. for example, a value of '06' in the "number of blocks" field requests to return the security status of 7 blocks. request parameters: uid (optional) first block number number of blocks response parameters: block locking status (see table 61: block locking status ) n block of data response parameter: error code as error_flag is set: ? 03h: option not supported ? 0fh: other error table 59. get multiple block security status request format request sof request_ flags get multiple block security status uid first block number number of blocks crc16 request eof 8 bits 2ch 64 bits 8 bits 8 bits 16 bits table 60. get multiple block security status response format when error_flag is not set response sof response_flags block locking status crc16 response eof 8 bits 8 bits (1) 1. repeated as needed. 16 bits table 61. block locking status b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 all 0 0: current block not locked 1: current block locked table 62. get multiple block security status response format when error_flag is set response sof response_flags error code crc16 response eof 8 bits 8 bits 16 bits
lri2k commands codes 63/86 figure 53. get multiple block security status frame exchange between vcd and lri2k vcd sof get multiple block security status eof lri2k <-t 1 -> sof get multiple block security status eof
commands codes lri2k 64/86 20.15 kill on receiving the kill command, in the addres sed mode only, the lri2k compares the kill code with the data contained in the request and reports whether the operation was successful in the response. the option_flag is supported. if the command is received in the non addressed or the selected mode, the lri2k returns an error response. during the comparison cycle equal to t w , there should be no modulation (neither 100% nor 10%). otherwise, the lri2k may not ma tch the kill code correctly. the t w time is equal to t 1nom + 18 302s. after a successful kill command , the lri2k is deactiv ated and does not interpret any other command. request parameters: uid (optional) kill code response parameter: no parameter. the response is send back after the writing cycle response parameter: error code as error_flag is set: ? 0fh: other error ? 14h: block not locked table 63. kill request format request sof request_ flags kill ic mfg code uid kill access kill code crc16 request eof 8 bits a6h 02h 64 bits 00h 32 bits 16 bits table 64. kill response format when error_flag is not set response sof response_flags crc16 response eof 8 bits 16 bits table 65. kill response format when error_flag is set response sof response_flags er ror code crc16 response eof 8 bits 8 bits 16 bits figure 54. kill frame exchange between vcd and lri2k vcd sof kill request eof lri2k <-t 1 -> sof kill response eof kill sequence when error lri2k <------------ t w ------------><- t 1 -> sof kill response eof
lri2k commands codes 65/86 20.16 write kill on receiving the write kill command, the lri2k writes the kill code with the data contained in the request and reports whether the operation was successful in the response. the option_flag is supported. after a successful writ e, the kill code must be locked by a lock kill command to activate the protection. during the write cycle t w , there should be no modulation (neither 100% nor 10%). otherwise, the lri2k may not correctly program the data to the memory. the t w time is equal to t 1nom + 18 302 s. request parameters: uid (optional) kill address (00h = kill, other = error) data no parameter. the response is send back after the write cycle. response parameter: error code as error_flag is set: ? 10h: block address not available ? 12h: block is locked ? 13h: block not programmed table 66. write kill request format request sof request_ flags write kill ic mfg code uid kill access kill code crc16 request eof 8 bits b1h 02h 64 bits 00h 32 bits 16 bits table 67. write kill response format when error_flag is not set response sof response_ flags crc16 response eof 8 bits 16 bits table 68. write kill response format when error_flag is set response sof response_flags e rror code crc16 response eof 8 bits 8 bits 16 bits figure 55. write kill frame exchange between vcd and lri2k vcd sof write kill request eof lri2k <-t 1 -> sof write kill response eof write sequence when error lri2k <------------ t w ------------><- t 1 -> sof write kill response eof
commands codes lri2k 66/86 20.17 lock kill on receiving the lock kill command, the lri2k locks the kill code permanently. the option_flag is supported. rfu bit 8 of the request flag must be set to ?1?. during the write cycle t w , there should be no modulation (neither 100% nor 10%). otherwise, the lri2k may not lock the memory block correctly. the t w time is equal to t 1nom + 18 302 s. request parameters: (optional) uid kill address (bit 8 = ?1?: 00h = kill, ot her = error) protect status (see table below) response parameter: no parameter. response parameter: error code as error_flag is set: ? 10h: block address not available ? 11h: block is locked ? 14h: block not locked table 69. lock kill request format request sof request_ flags lock kill ic mfg code uid kill access protect status crc16 request eof 8 bits b2h 02h 64 bits 00f 8 bits 16 bits b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 00000001 table 70. lock kill response format when error_flag is not set response sof response_f lags crc16 response eof 8 bits 16 bits table 71. lock kill response format when error_flag is set response sof response_flags e rror code crc16 response eof 8 bits 8 bits 16 bits
lri2k commands codes 67/86 figure 56. lock kill frame exchange between vcd and lri2k vcd sof lock kill request eof lri2k <-t 1 -> sof lock kill response eof lock sequence when error lri2k <------------ t w ------------><- t 1 -> sof lock kill response eof
commands codes lri2k 68/86 20.18 fast read single block on receiving the fast read single block command, the lri2k reads the requested block and sends back its 32-bit value in the response. the option_flag is supported. the data rate of the response is multiplied by 2. request parameters: option_flag uid (optional) block number response parameter: block locking status if option_flag is set 4 bytes of block data response parameter: error code as error_flag is set: ? 0fh: other error ? 10h: block address not available table 72. fast read single block request format request sof request_ flags fast read single block ic mfg code uid block number crc16 request eof 8 bits c0h 02h 64 bits 8 bits 16 bits table 73. fast read single block response format when error_flag is not set response sof response_ flags block locking status data crc16 response eof 8 bits 8 bits 32 bits 16 bits table 74. block locking status b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 all 0 0: current block not locked 1: current block locked table 75. fast read single block response format when error_flag is set response sof response_ flags error code crc16 response eof 8 bits 8 bits 16 bits
lri2k commands codes 69/86 figure 57. fast read single block fr ame exchange between vcd and lri2k vcd sof fast read single block request eof lri2k <-t 1 -> sof fast read single block response eof
commands codes lri2k 70/86 20.19 fast inventory initiated before receiving the fast inventory initiate d command, the lri2k must have received an initiate or a fast initiate command in order to set the initiate_ flag. if not, the lri2k does not answer to the fast inventory initiated command. on receiving the fast inventor y initiated request, the lri2k ru ns the anticollision sequence. the inventory_flag must be set to 1. the meaning of flags 5 to 8 is shown in ta b l e 1 3 : request flags 5 to 8 when bit 3 = 1 . the data rate of the response is multiplied by 2. the request contains: the flags, the inventory command code the afi if the afi flag is set the mask length the mask value the crc the lri2k does not generate any answer if an error occurs. the response contains: the flags the unique id during an inventory process, if the vcd does not receive an rf lri2k response, it waits a time t 3 before sending an eof to switch to the next slot. t 3 starts from the rising edge of the request eof sent by the vcd. if the vcd sends a 100% modulated eof, the minimum value of t 3 is: t 3 min = 4384/f c (323.3 s) + t sof if the vcd sends a 10% modulated eof, the minimum value of t 3 is: t 3 min = 4384/f c (323.3 s) + t nrt where: t sof is the time required by the lri2k to transmit an sof to the vcd t nrt is the nominal response time of the lri2k t nrt and t sof are dependent on the lri2k-to-vcd data rate and subcarrier modulation mode. table 76. fast inventory initiated request format request sof request flags fast inventory initiated ic mfg code optiona l afi mask length mask value crc16 request eof 8 bits c1h 02h 8 bits 8 bits 0 - 64 bits 16 bits table 77. fast inventory initiated response format response sof response flag s dsfid uid crc16 response eof 8 bits 00h 64 bits 16 bits
lri2k commands codes 71/86 20.20 fast initiate on receiving the fast initiate command, the lri2k sets the internal initiate_flag and sends back a response. the command has to be issued in the non addressed mode only (select_flag is reset to 0 and address_flag is reset to 0). if an error occurs, the lri2k does not generate any answer. the initiate_flag is reset after a power off of the lri2k. the data rate of the response is multiplied by 2. the request contains: no data the response contains: the flags the unique id table 78. fast initiate request format request sof request flags fast init iate ic mfg code crc16 request eof 8 bits c2h 02h 16 bits table 79. fast initiate response format response sof response_ flags dsfid uid crc16 response eof 8 bits 00h 64 bits 16 bits figure 58. fast initiate frame exchange between vcd and lri2k vcd sof fast initiate request eof lri2k <-t 1 -> sof fast initiate response eof
commands codes lri2k 72/86 20.21 fast read multiple block on receiving the fast read multiple block command, the lri2k reads the requested blocks and sends back their value in multiples of 32 bits in the response. the blocks are numbered from '00? to '3f' in the request and the value is minus one (?1) in the field. for example, a value 06h in the ?number of blocks? field causes the lri2k to read 7 blocks. the maximum number of blocks is fixed at 64. during sequential block read, when the block address reaches 64, it rolls over to 0. the option_flag is supported. the data rate of the response is multiplied by 2. request parameters: option_flag uid (optional) first block number number of blocks response parameters: block locking status if option_flag is set n block of data response parameter: error code as error_flag is set: ? 0fh: other error ? 10h: block address not available table 80. fast read multiple block request format request sof request_ flags fast read multiple block ic mfg code uid first block number number of blocks crc16 request eof 8 bits c3h 02h 64 bits 8 bits 8 bits 16 bits table 81. fast read multiple block response format when error_flag is not set response sof response_ flags block locking status data crc16 response eof 8 bits 8 bits (1) 1. repeated as needed. 32 bits (1) 16 bits table 82. block locking status if option_flag is set b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 all 0 0: current block not locked 1: current block locked table 83. fast read multiple block response format when error_flag is set response sof response_flags err or code crc16 response eof 8 bits 8 bits 16 bits
lri2k commands codes 73/86 figure 59. fast read multiple block frame exchange between vcd and lri2k vcd sof fast read multiple block request eof lri2k <-t 1 -> sof fast read multiple block response eof
commands codes lri2k 74/86 20.22 inventory initiated before receiving the inventory initiated command, the lri2k must have received an initiate or a fast initiate command in order to set the initiate_ flag. if not, the lri2k does not answer to the inventory initiated command. on receiving the inventory init iated request, the lri2k runs the anticollision sequence. the inventory_flag must be set to 1. the meaning of flags 5 to 8 is given in table 13: request flags 5 to 8 when bit 3 = 1 . the request contains: the flags, the inventory command code the afi if the afi flag is set the mask length the mask value the crc the lri2k does not generate any answer if an error occurs. the response contains: the flags the unique id during an inventory process, if the vcd does not receive an rf lri2k response, it waits a time t 3 before sending an eof to switch to the next slot. t 3 starts from the rising edge of the request eof sent by the vcd. if the vcd sends a 100% modulated eof, the minimum value of t 3 is: t 3 min = 4384/f c (323.3 s) + t sof if the vcd sends a 10% modulated eof, the minimum value of t 3 is: t 3 min = 4384/f c (323.3 s) + t nrt where: t sof is the time required by the lri2k to transmit an sof to the vcd t nrt is the nominal response time of the lri2k t nrt and t sof are dependent on the lri2k-to-vcd data rate and subcarrier modulation mode. table 84. inventory initiated request format request sof request flags inventory initiated ic mfg code optiona l afi mask length mask value crc16 request eof 8 bits d1h 02h 8 bits 8 bits 0 - 64 bits 16 bits table 85. inventory initiated response format response sof response flags dsfid uid crc16 response eof 8 bits 00h 64 bits 16 bits
lri2k commands codes 75/86 20.23 initiate on receiving the initiate command, the lri2k sets the internal initiate_flag and sends back a response. the command has to be issued in the non addressed mode only (select_flag is reset to 0 and address_flag is reset to 0). if an error occurs, the lri2k does not generate any answer. the initiate_flag is reset after a power off of the lri2k. the request contains: no data the response contain: the flags the unique id table 86. initiate request format request sof request flags initiat e ic mfg code crc16 request eof 8 bits d2h 02h 16 bits table 87. initiate initiated response format response sof response flags dsfid uid crc16 response eof 8 bits 00h 64 bits 16 bits figure 60. initiate frame exchange between vcd and lri2k vcd sof initiate request eof lri2k <-t 1 -> sof initiate response eof
maximum rating lri2k 76/86 21 maximum rating stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. these are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not imp lied. exposure to absolute ma ximum rating conditions for extended periods may affect device reliability. refer also to the stmicroelectronics sure program and other relevant quality documents. table 88. absolute maximum ratings symbol parameter min. max. unit t stg storage temperature ufdfpn8 ?65 150 c wafer (kept in its antistatic bag) 15 25 t stg storage time wafer (kept in its antistatic bag) 23 months i cc supply current on ac0 / ac1 ?20 20 ma v max input voltage on ac0 / ac1 ?7 7 v v esd electrostatic discharge voltage (1) 1. mil. std. 883 - method 3015. ufdfpn8 (hbm (2) ) 2. human body model. ?1000 1000 v ufdfpn8 (mm (3) ) 3. machine model. ?100 100 v
lri2k dc and ac parameters 77/86 22 dc and ac parameters this section summarizes the operating and measurement conditions, and the dc and ac characteristics of the device. the parameters in the dc and ac characteristic tables that follow are derived from tests performed under the measurement conditions summarized in the relevant tables. designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. table 89. ac characteristics (1) (2) 1. t a = ?20 to 85c. 2. all timing measurements were performed on a reference antenna with the following characteristics: external size: 75 mm x 48 mm number of turns: 6 width of conductor: 1 mm space between 2 conductors: 0.4 mm value of the tuning capacitor: 28.5 pf (lri2k-w4) value of the coil: 4.3 h tuning frequency: 13.8 mhz. symbol parameter condition min typ max unit f cc external rf signal frequency 13.553 13.56 13.567 mhz mi carrier 10% carrier modulation index mi=(a-b)/(a+b) 10 30 % t rfr ,t rff 10% rise and fall time 0.5 3.0 s t rfsbl 10% minimum pulse width for bit 7.1 9.44 s mi carrier 100% carrier modulation index mi=(a-b)/(a+b) 95 100 % t rfr ,t rff 100% rise and fall time 0.5 3.5 s t rfsbl 100% minimum pulse width for bit 7.1 9.44 s t jit bit pulse jitter ?2 +2 s t min cd minimum time from carrier generation to first data from h-field min 0.1 1 ms f sh subcarrier frequency high f cc /32 423.75 khz f sl subcarrier frequency low f cc /28 484.28 khz t 1 time for lri2k response 4224/f s 318.6 320.9 323.3 s t 2 time between command 4224/f s 309 311.5 314 s t w programming time 5.8 ms
dc and ac parameters lri2k 78/86 figure 61. lri2k synchronous timing, transmit and receive figure 61 shows an ask modulated signal, from the vcd to the lri2k. the test condition for the ac/dc parameters are: close coupling condition with tester antenna (1mm) lri2k performance measured at the tag antenna table 90. dc characteristics (1) 1. t a = ?20 to 85c. symbol parameter test conditions min. typ. max. unit v cc regulated voltage 1.5 3.0 v v ret retromodulated induced voltage iso10373-7 10 mv i cc supply current read v cc = 3.0 v 50 a write v cc = 3.0 v 150 a c tun internal tuning capacitor f = 13.56 mhz for w4/1 21 pf f = 13.56 mhz for w4/2 28.5 pf f = 13.56 mhz for w4/3 97 pf f = 13.56 mhz for w4/4 23.5 pf table 91. operating conditions symbol parameter min. max. unit t a ambient operating temperature ?20 85 c ai06680 ab t rff t rfr t rfsbl t max t min cd f cc
lri2k package mechanical data 79/86 23 package mechanical data in order to meet environmental requirements, st offers these devices in ecopack ? packages. these packages have a lead-free second-level interconnect. the category of second-level interconnect is marked on the package and on the inner box label, in compliance with jedec standard jesd97. the maximum ratings related to soldering conditions are also marked on the inner box label. ecopack is an st trademark. ecopack specifications are available at: www.st.com . figure 62. ufdfpn8 - 8-lead ultra thin fine pitch dual flat package no lead (mlp) outline 1. drawing is not to scale. table 92. ufdfpn8 - 8-lead ultra thin fine pitch dual flat package no lead (mlp) mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. typ. min. max. typ. min. max. a 0.55 0.45 0.6 0.0217 0.0177 0.0236 a1 0.02 0 0.05 0.0008 0 0.002 b 0.25 0.2 0.3 0.0098 0.0079 0.0118 d 2 1.9 2.1 0.0787 0.0748 0.0827 d2 1.6 1.5 1.7 0.063 0.0591 0.0669 e 3 2.9 3.1 0.1181 0.1142 0.122 e2 0.2 0.1 0.3 0.0079 0.0039 0.0118 e 0.5 - - 0.0197 - - l 0.45 0.4 0.5 0.0177 0.0157 0.0197 l1 0.15 0.0059 l3 0.3 0.0118 ddd (2) 2. applied for exposed die paddle and terminals. exclude embedding part of exposed die paddle from measuring. 0.08 0.0031 d e ufdfpn-01 a a1 ddd l1 e b d2 l e2 l3
part numbering lri2k 80/86 24 part numbering for further information on any aspect of this device, please contact your nearest st sales office. table 93. ordering information scheme example: lri2k - w4 / 2 ge device type lri2k package w4 =180 m 15 m unsawn wafer sbn18 = 180 m 15 m bumped and sawn wafer on 8-inch frame mbtg = ufdfpn8 (mlp8), tape & reel packing, ecopack ? , lead-free, rohs compliant, sb 2 o 3 -free and tbba-free tuning capacitance 1 = 21 pf 2 = 28.5 pf 3 = 97 pf 4 = 23 pf customer code given by st ge = generic product xx = customer code after personalization
lri2k anticollision algorithm (informative) 81/86 appendix a anticollision algorithm (informative) the following pseudocode describes how anti collision could be implemented on the vcd, using recursivity. a.1 algorithm for pulsed slots function push (mask, address); pushes on private stack function pop (mask, address); pops from private stack function pulse_next_pause; generates a power pulse function store( lri2k _uid); stores lri2k _uid function poll_loop (sub_address_size as integer) pop (mask, address) mask = address & mask; generates new mask ; send the request mode = anticollision send_request (request_cmd, mode, mask length, mask value) for sub_address = 0 to (2^sub_address_size - 1) pulse_next_pause if no_collision_is_detected ; lri2k is inventoried then store (lri2k_uid) else ; remember a collision was detected push(mask,address) endif next sub_address if stack_not_empty ; if some collisions have been detected and then ; not yet processed, the function calls itself poll_loop (sub_address_size); recursively to process the last stored collision endif end poll_loop main_cycle: mask = null address = null push (mask, address) poll_loop(sub_address_size) end_main_cycle
crc (informative) lri2k 82/86 appendix b crc (informative) b.1 crc error detection method the cyclic redundancy check (crc) is calculated on all data contained in a message, from the start of the flags through to the end of data. the crc is used from vcd to lri2k and from lri2k to vcd. to add extra protection against shifting errors, a further transformation on the calculated crc is made. the one?s complement of the ca lculated crc is the va lue attached to the message for transmission. to check received messages the 2 crc bytes are often also included in the re-calculation, for ease of use. in this case, the expected value for the generated crc is the residue f0b8h. b.2 crc calculation example this example in c language illustrates one met hod of calculating the crc on a given set of bytes comprising a message. c-example to calculate or check the crc16 according to iso/iec 13239 #define polynomial8408h// x^16 + x^12 + x^5 + 1 #define preset_valueffffh #define check_valuef0b8h #define number_of_bytes4// example: 4 data bytes #define calc_crc1 #define check_crc0 void main() { unsigned int current_crc_value; unsigned char array_of_databytes[number_of_bytes + 2] = {1, 2, 3, 4, 91h, 39h}; int number_of_databytes = number_of_bytes; int calculate_or_check_crc; int i, j; calculate_or_check_crc = calc_crc; // calculate_or_check_crc = check_crc;// this could be an other example if (calculate_or_check_crc == calc_crc) { number_of_databytes = number_of_bytes; table 94. crc definition crc definition crc type length polynomial direction preset residue iso/iec 13239 16 bits x 16 + x 12 + x 5 + 1 = 8408h backward ffffh f0b8h
lri2k crc (informative) 83/86 } else // check crc { number_of_databytes = number_of_bytes + 2; } current_crc_value = preset_value; for (i = 0; i < number_of_databytes; i++) { current_crc_value = current_crc_value ^ ((unsigned int)array_of_databytes[i]); for (j = 0; j < 8; j++) { if (current_crc_value & 0001h) { current_crc_value = (current_crc_value >> 1) ^ polynomial; } else { current_crc_value = (current_crc_value >> 1); } } } if (calculate_or_check_crc == calc_crc) { current_crc_value = ~current_crc_value; printf ("generated crc is 0x%04x\n", current_crc_value); // current_crc_value is now ready to be appended to the data stream // (first lsbyte, then msbyte) } else // check crc { if (current_crc_value == check_value) { printf ("checked crc is ok (0x%04x)\n", current_crc_value); } else { printf ("checked crc is not ok (0x%04x)\n", current_crc_value); } } }
crc (informative) lri2k 84/86 b.3 application family identifier (afi) (informative) the afi (application family identifier) represents the type of application targeted by the vcd and is used to extract from all the lri2k present only the lri2k meeting the required application criteria. it is programmed by the lri2k issuer (the purchaser of the lri2k). once locked, it cannot be modified. the most significant nibble of the afi is used to code one specific or all application families, as defined in ta b l e 9 5 . the least significant nibble of the afi is us ed to code one specific or all application subfamilies. subfamily codes diff erent from 0 are proprietary. table 95. afi coding (1) 1. x = '1' to 'f', y = '1' to 'f. afi most significant nibble afi least significant nibble meaning viccs respond from examples / note ?0? ?0? all families and subfamilies no applicative preselection ?x? '0 'all subfamilies of family x wide applicative preselection 'x '?y? only the y th subfamily of family x ?0? ?y? proprietary subfamily y only ?1 '?0?, ?y? transport mass transit, bus, airline etc. '2 '?0?, ?y? financial iep, banking, retail etc. '3 '?0?, ?y? identification access control etc. '4 '?0?, ?y? telecommunication public telephony, gsm etc. ?5? ?0?, ?y? medical '6 '?0?, ?y? multimedia internet services etc. '7 '?0?, ?y? gaming 8 '?0?, ?y? data storage portable files etc. '9 '?0?, ?y? item management 'a '?0?, ?y? express parcels 'b '?0?, ?y? postal services 'c '?0?, ?y? airline bags 'd '?0?, ?y? rfu 'e '?0?, ?y? rfu ?f? ?0?, ?y? rfu
lri2k revision history 85/86 revision history table 96. document revision history date revision changes 17-feb-2006 1 initial release. 08-feb-2007 2 figure 2: ufdfpn8 (mlp) connections added. only bits set to ?1? are programmed to the afi and dsfid registers (see section 20.9: write afi and section 20.11: write dsfid . c tun typical value for w4/3 modified in table 90: dc characteristics . small text changes. 15-jun-2007 3 section 20.9: write afi and section 20.11: write dsfid modified. 20-jul-2007 4 document status promot ed from preliminary data to full datasheet. small text changes. 31-aug-2007 5 23.5 pf internal tuning capacitor (c tun ) value added (see features on page 1 and table 90: dc characteristics . v esd max modified for mlp in table 88: absolute maximum ratings . 07-sep-2007 6 v esd min modified for mlp in table 88: absolute maximum ratings . 08-apr-2008 7 response parameters modified in section 20.14: get multiple block security status on page 62 . ufdfpn8 package mechanical data updated and dimensions in inches rounded to four decimal digits instead of three in ta b l e 9 2 : ufdfpn8 - 8-lead ultra thin fine pitch dual flat package no lead (mlp) mechanical data . 16-sep-2008 8 lri2k products are no longer offered in a1 inlays and a6 and a7 antennas. t stg added for ufdpfn8 package in table 88: absolute maximum ratings . table 93: ordering information scheme clarified.
lri2k 86/86 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by an authorized st representative, st products are not recommended, authorized or warranted for use in milita ry, air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2008 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of LRI2K-A1T1GE

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X